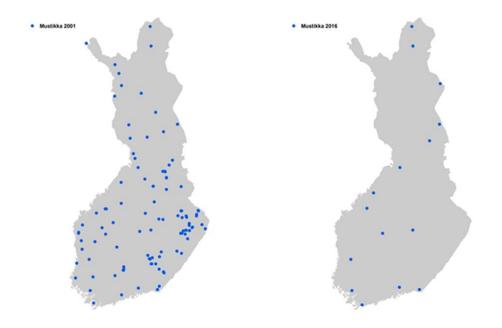
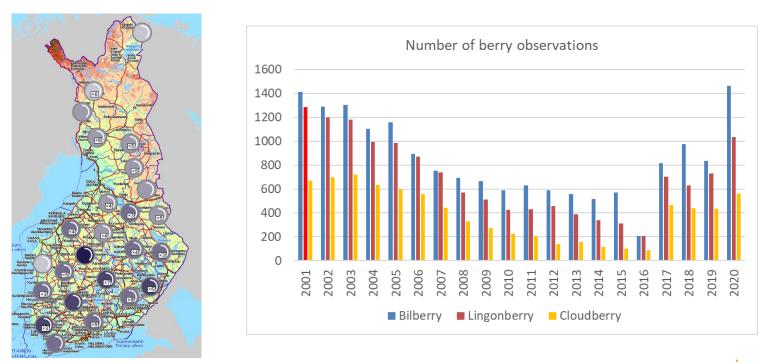
Citizen science and berry yield monitoring – methods, applications and contribution to climate change adaptation

Citizen science and climate change adaptation

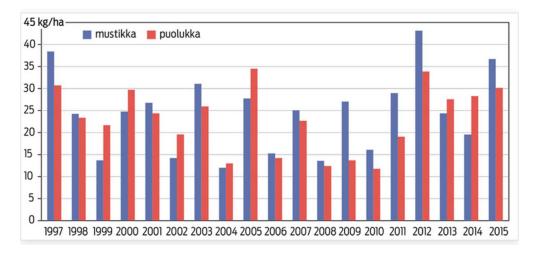
- To develop adaptation strategies, we need to gather information how changes in global temperatures affect local environments and ecosystems
- Citizens who get involved in gathering the information improve their science literacy, develop increased understanding of environmental issues that affect them directly, and, in the best cases, *become motivated to take direct, positive personal action*


How?

Five 1 m² observation squares in a monitoring forest stand. Flowers, raw berries and ripe berries are counted from each square during the growing season


Who?

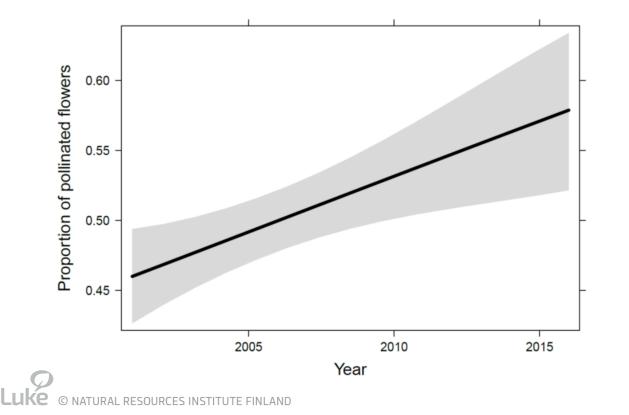
1997 → 2016 observations done mostly by field workers of Luke/Metla


Citizen science concept 2017 \rightarrow

Thanks to mobile devices with internet/positioning properties, wide citizen participation is possible \rightarrow marjahavainnot.fi – platform

.UKE © NATURAL RESOURCES INSTITUTE FINLANI

Yield estimations




$$\overline{y}_{j} = \frac{(N_{Mj}\overline{x}_{Mj}w_{M} + N_{Pj}\overline{x}_{Pj}w_{P})}{N_{j}} \times 10c$$
(1)

where

- \overline{y}_j = mean annual berry yield (kg ha⁻¹) in year j (j=1997, ..., 2008)
- N_{Mj} = number of stands on medium or more fertile site types in year *j* (see Table 1)
- \$\overline{x}_{Mj}\$ = average number of ripe berries (berries per m²) on stands which belonged to medium or more fertile site types in year j
- w_M = weight of one ripe berry on medium and more fertile site types (g)
- N_{Pj} = number of stands on rather poor or poorer site types in year *j* (see Table 1)
- x_{Pj} = average number of ripe berries (berries per m²) on stands which belonged to rather poor or poorer site types in year j
- w_P = weight of one ripe berry on rather poor and poorer site types (g)
- $N_j = N_{Mj} + N_{Pj}$ (i.e. number of stands in year *j*; see Table 1)
- c = coverage of a species (%)

Monitoring of pollination success

Thank you!

